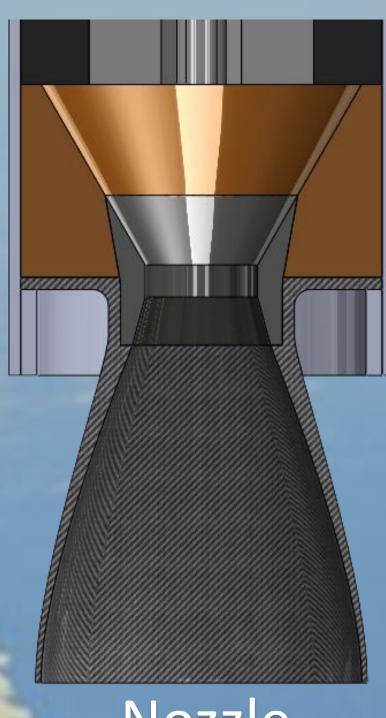
Problem Statement

 Design a valve system for an Integrated Solid Hybrid Rocket Motor, which allows a smooth transition from a solid to hybrid stage

Project Motivation


- Surpass current high altitude amateur rocket record of 72 miles
- Become industry pioneers of integrated solid hybrid rocketry
- Submit technical paper to the American Institute of Aeronautics and Astronautics (AIAA)

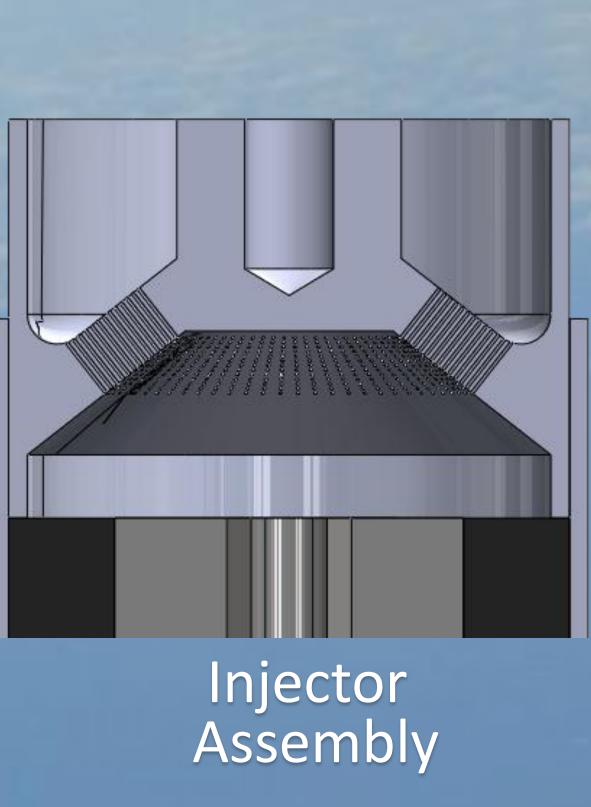
Design Objectives

- Develop an integrated injection valve
- Design a 4" diameter integrated solid hybrid rocket
- Simulate and test propellant thrust properties
- Integrate solid and hybrid fuel systems
- Scale model up to 12" diameter

Part Design

Nozzle Assembly

Time Line


	1.00								
	t September	October	November	December	January	February	March	April	g
1									
	\sim								
	2								
-									-
_									_
_									_
									_
					ζ				
						\langle			
			1		-	-	1.000		
					-				
			1000	Antonio					
	and a	-	6000	Sec.	-				
	-	2							
	200 S	-	1			-			

#	Name
0	Milestone List
1	Project Formulation
2	Research and Development
3	Conceptual Design
4	CAD Model
5	CFD Analysis
6	Proof of Concept
7	Design Iterations
8	Scaled Prototype
9	Static Testing and Analysis
10	Full Scale Model
11	Final Report

Integrated Solid Hybrid

Analysis and Testing

• Using CFD Analysis for injector flow. Injector flow characterization Solid and Hybrid propellant characterization

Pedro Serrat: Subject matter expert of oxidizer (N₂0) characteristics, Injector Valve Flow rates, SolidWorks design Eduardo Gorrochotegui: Subject matter expert in Heat transfer on injector system Valve Flow Rates SolidWorks design.

Dennis Moreno: Subject matter expert in propellant design, Manufacturing expert, injector valve flow rates and SolidWorks Design

Eduardo Pedro Dennis Gorrochotegui Moreno Serrat Faculty Advisor: Igor Tsukanov Industry Advisors: Korey Kline & Derek Deville

Responsibilities

