

Problem Statement

- Design and build a mechanism capable of measuring friction forces between polymeric fibers
- Update current model of testing (ASTM Test Method D3412) for use in scanning electron microscope

Motivation

- Understanding friction analysis on the nano scale
- Evaluating and enhancing materials
- Modernizing and reforming the testing standard

In-Situ Friction Analysis Between Reinforced Fibers

Proposed Design YARN GUIDE HELIX -> ADJUSTABLE INPUT TENSION YARN PACKAGE

Design Objectives

- 170mm x 120mm x 50mm

- compatible

Prototyping and Testing

- analysis of prototype

- SEM integration

Team Members

Eduardo Escobar Jean Paul Arroyo Advisor: Dr. Benjamin Boesl

Must fit in space of dimensions Motor should pick up between 1 and 4 inches of yarn per minute Requires input tension device Must be vacuum-friendly and SEM

Solidworks modeling and motion Construction and testing of prototype under working conditions

